
International Journal of Heat and Mass Transfer 48 (2005) 501–509

www.elsevier.com/locate/ijhmt
Numerical investigation of ultrashort laser damage
in semiconductors

J.K. Chen a,*, D.Y. Tzou b, J.E. Beraun a

a Laser Effects Research Branch, Directed Energy Directorate, Air Force Research Laboratory, 3550 Aberdeen Avenue SE,

Kirtland AFB, NM 87117-5776, USA
b Department of Mechanical and Aerospace Engineering, University of Missouri––Columbia, Columbia, MO 65211, USA

Received 26 February 2004; received in revised form 10 September 2004

Available online 6 November 2004
Abstract

A complete self-consistent model for transport dynamics in semiconductors caused by ultrashort-pulse laser heating

is presented based on the relaxation-time approximation of the Boltzmann equation. Carrier–lattice nonequilibrium

interactions are simulated to obtain the temporal and spatial evolution of the carrier density and temperature as well

as the lattice temperature. It is shown that the calculated damage threshold based on the carrier density criterion agrees

fairly well with the experimental data for both Si and Ge semiconductors, especially for sub-picosecond pulses. It is also

found that one-photon absorption and Auger recombination are the two critical factors that influence the electron–hole

carrier generation.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Laser annealing process of semiconductor materials

has been the subject of a great number of investigations

since late 1970s [1]. The issue that attracts the most

attention is the nature of the induced phase transition

that accompanies pulse laser annealing and renders a

disordered solid into a near-perfect crystal. For pulse

durations longer than the carrier–lattice energy relaxa-

tion time (a few picoseconds), it has generally been ac-

cepted that the solid–liquid phase transition by high

enough laser fluences is a rapid thermal process [2],

which results from the fast energy exchange between
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the optically excited electrons and the lattice. On the

other hand, experiments with femtosecond (fs) laser

pulses of high fluences have demonstrated ultrafast

phase transformation on a subpicosecond time scale

[3–7]. The mechanism of this ultrafast phase transforma-

tion differs from the above thermal melting. Under ultra-

short-pulse laser excitation high density (1021–1022cm�3)

and high temperature (P1000K) electrons could be
photoexcited from valence band into the conduction

band. As a result of a large number of covalent bonds

destroyed, the lattice experiences a dramatic reduction

in its shear force and undergoes a plasma-mediated

phase transition [8]. Since the lattice instability occurs

prior to the significant heating of the phonon subsystem,

this damage is referred to as a non-thermal melting.

Although the kinetics of high-density plasma gener-

ated in a semiconductor by ultrashort laser pulses

have theoretically been investigated in many papers, a
ed.



Nomenclature

b radius where I is e�1 times of that at the

laser spot center

C heat capacity

D ambipolar diffusion coefficient

E energy

e constant (=2.718)

F Fermi–Dirac integral

H ratio of two Fermi–Dirac integrals

h Planck�s constant
⁄ h/2p
L sample thickness

I laser intensity

I0 transmitted laser intensity at the incident

surface
�j carrier current vector

kB Boltzmann constant

m* effective mass

N effective density of states

n number density of carriers

Q heat flux

q charge of an electron

R surface reflectivity

r radius

S Seeback coefficient

T temperature (K)

t time

tp pulse duration defined as the full width at

the half maximum

U total energy density in carrier pairs

W ambipolar energy current vector

�w energy current vector

�x position vector

z direction of laser beam propagation

Greek symbols

a one-photon absorption coefficient

b two-photon absorption coefficient

d optical penetration depth

U laser energy

/ laser fluence

C Gamma function

c Auger recombination coefficient

g reduced Fermi level

u quasi-Fermi level

j thermal conductivity

l mobility of carriers

m radiation of frequency

p Peltier coefficient

H free-carrier absorption cross-section

h impact ionization coefficient

r electrical conductivity

s relaxation time

x constant (=4 ln2)

n,f order of Fermi–Dirac integral

Subscripts and superscripts

C conduction band

c carrier

e electron

e–h electron–hole pair

f onset of the damage

g band gap

h hole

l lattice (phonon)

0 Maxwell–Boltmann distribution

V valence band
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calculation of melting or more generally of damage

threshold has not been done consistently so far due to

a lack of the knowledge of accurate material properties

and the true criterion for melting [9]. There are twometh-

ods used in the evaluation of the damage threshold for

semiconductors. One approach employs a single rate

equation to evaluate the electron density in the conduc-

tion band [10]. Melting is assumed when the calculated

electron density exceeds a critical density. The other ap-

proach uses a self-consistent model to simulate the elec-

tron density in the conduction band, the carrier

temperature, and the phonon temperature [9]. The latter

allows the determination of melting damage based on the

electron density or the lattice temperature. The agree-

ment between the theoretical and experimental values re-

ported for Si [9] is somewhat satisfying for laser pulse

durations shorter than two picoseconds (ps). The devia-
tion for the longer pulses was attributed to the negligence

of the diffusion terms in the self-consistent model.

In this paper, a complete self-consistent model that

describes the electron–hole carrier density and current,

the ambipolar energy current, and the carrier and lattice

temperature is presented based on the relaxation-time

approximation of the Boltzmann equation [11]. Temper-

ature-dependent multi-photon and free-carrier absorp-

tions are considered. The coupled set of nonlinear

equations is solved with a finite difference method for

the carrier density and temperature as well as the lattice

temperature. Whether the diffusion effects impact the

carrier density prediction is investigated. A rate equation

that models the carrier density along is also reduced

from the complete self-consistent model. The theoretical

melting thresholds are compared with the experimental

data for Si and Ge semiconductors [9].
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2. Ultrafast transport dynamics in semiconductors

When a semiconductor is excited with a short laser

pulse, electrons absorb the photon energy and transit

from the valence to the conduction band via single-

and/or multi-photon absorption, depending on the pho-

ton energy (hm) and the band-gap energy (Eg). This inter-
band transition of the electrons creates holes in the

valence band. As electrons and holes undergo temporal

and spatial evolution, a part of them recombine via the

three-body Auger process. In the meantime, new elec-

tron–hole pairs are generated via impact ionization.

The excess energy of the created electron–hole pairs,

hm–Eg and/or 2hm–Eg, is the kinetic energy that leads to
elevated carrier temperatures. The carriers then thermal-

ize into the Fermi–Dirac distribution via carrier–carrier

collisions on a <10�13 s time scale. The distribution func-

tions for the electrons and holes can possess different

quasi-Fermi levels but have a common temperature

(Te = Th). Meanwhile, a thermalization between the car-

riers and the phonons proceeds, and the thermal equilib-

rium state will be established.

To model the transport process of a large number of

hot electrons, holes, and phonons in a semiconductor,

the formalism must be based on the principle of statisti-

cal mechanics. The non-equilibrium states can thus be

represented with local values of the statistical parame-

ters. The formulation of ultrafast transport dynamics

in semiconductors presented below follows Drabble

and Goldsmid [11] and van Driel [12]. From the relaxa-

tion-time approximation of the Boltzmann equation,

one has the electrical and energy current of the carriers

�jc ¼
rc
q
ruc � rcScrT c ð1Þ

�wc ¼ pc �
uc
q

� �
�jc � jcrT c ð2Þ

The above four transport parameters, rc, Sc, pc and jc,
are given by

rc ¼ qncl
0
cH

0
1=2ðgcÞ ð3Þ

Sc ¼ � kB
qc

gc � 2H 1
0ðgcÞ

� �
ð4Þ

pc ¼ T cSc ð5Þ

jc ¼
k2BrcT c
q2

6H 2
0ðgcÞ � 4H 1

0ðgcÞ
2

h i
ð6Þ
�J ¼ �D
rnþ n

kBT e
H 1=2

�1=2 geð Þ þ H 1=2
�1=2 ghð Þ

h i�1
rEg

þ n
T e
2 H 1

0ðgeÞ þ H 1
0ðghÞ

� �
= H 1=2

�1=2 geð Þ þ H 1=2
�1=2 ghð Þ

hn
8><
>:
where qc equals �q for electrons and +q for holes,
and H n

fðgcÞ ¼ F nðgcÞ=F fðgcÞ with Fn(gc) denoting the
Fermi–Dirac integral of order n

F n gcð Þ ¼ 1

C n þ 1ð Þ

Z 1

0

xn

1þ exp x� gcð Þ dx ð7Þ

The reduced Fermi level gc is respectively defined as

ge ¼
ue � EC
kT e

and gh ¼
EV � uh
kT h

ð8Þ

The local carrier density (nc) is obtained by integrating

over the microscopic quasi-equilibrium distribution

functions [13]

nc ¼ 2
m�
ckBT c
2p�h2

� 	3=2
F 1=2ðgcÞ ð9Þ

in which the quantity 2ðm�
ckBT c=2p�h

2Þ3=2 is referred to as
the effective density of states (Nc). The Fermi–Dirac

integral F1/2(gc) can be calculated from Eq. (9) and in

turn, the reduced Fermi level gc provided that nc
and Nc (or Tc) are given. Once gc is determined, the
value of Fn(gc) of any order n can be obtained. The cal-
culation of the Fermi–Dirac integrals and a numerical

table covering integer orders from n = �1 to n = 4 and
half-integer orders from n = �3/2 to n = 7/2 for the
range of arguments �4 6 gc 6 10 can be found in Ref.
[13].

2.1. Rate equation for carrier pairs

For laser-generated plasmas, both types of the carri-

ers basically move together. The Dember field, which

develops because of charge separation, prohibits the car-

rier charge and current densities from becoming signifi-

cantly different, respectively. Thus, one can assume

ne ¼ nh ¼ n; �je ¼ ��jh ð10Þ

From the definition of the carrier pair current �J ¼
��je=q ¼ �jh=q and Eq. (1), one obtains

�J ¼ 1

q2
rerh

re þ rh
r uh � ueð Þ þ q Se � Shð Þ½ 
 ð11Þ

By taking the gradient on both sides of Eq. (9), utilizing

the relationship dFl(gc)/dgc = Fl�1(gc) [13], taking the
gradient of gc in Eq. (8), substituting the above results
and Eq. (4) for Sc into Eq. (11) and regrouping, the fol-

lowing relationship is established:
i
� 3
2

o
rT e

9>=
>; ð12Þ
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where the band-gap energy Eg = EC � EV; the ambipolar
diffusion coefficient is

D ¼ kBT e
q

l0el
0
hH

0
1=2 geð ÞH 0

1=2 ghð Þ
l0eH

0
1=2 geð Þ þ l0hH

0
1=2 ghð Þ

H 1=2

�1=2 geð Þ þ H 1=2

�1=2 ghð Þ
h i

ð13Þ

The balance equation for the electron–hole pairs gener-

ated with a laser pulse is

on
ot

¼ aIð�x; tÞ
hm

þ bI2ð�x; tÞ
2hm

� cn3 þ hn�r � �J ð14Þ

The terms on the right-hand side of Eq. (14) represent

the carrier generation rates from the linear (one-photon)

and nonlinear (two-photon) absorption, the Auger

recombination, the impact ionization, and the loss due

to the carrier current, respectively.

2.2. Rate equation for carrier energy

The ambipolar energy current is the sum of the

carrier energy currents in electrons and holes,

W ¼ �we þ �wh. Substitution of Eq. (5) for pc, Eq. (8) for
uc, and the relationship �J ¼ ��je=q ¼ �jh=q into W results

in

W ¼ Eg þ 2kBT e H 1
0 geð Þ þ H 1

0 ghð Þ
� �� �

�J � je þ jhð ÞrT e

ð15Þ

Eq. (15) indicates that the ambipolar energy current de-

pends upon not only the carrier temperature gradient

but also the carrier flow.

The total energy density (U) in the electron–hole

pairs is the product of the carrier number density and

the sum of the band-gap energy per unit volume and

the kinetic energy

U ¼ n Eg þ
3

2
kBT e H 3=2

1=2 geð Þ þ H 3=2
1=2 ghð Þ

h i� �
ð16Þ

The total energy balance equation for the electron–hole

pairs is thus written as

oU
ot

¼ a þ Hnð ÞIð�x; tÞ þ bI2ð�x; tÞ � r � W � Ce–h
se

ðT e � T lÞ

ð17Þ

where Hn is the absorption of light by free carriers,
and Ce–h = oU/oTejn is the heat capacity of electron–
hole pairs. The first two terms on the right-hand side

of Eq. (17) denote the volumetric laser heat source,

and the last two terms are the rate of energy loss

due to the ambipolar energy current and the rate of en-

ergy exchange between the carriers and the lattice

respectively.
Substitution of Eq. (16) for U into Eq. (17) yields

Ce–h
oT e
ot

¼ a þ Hnð ÞIð�x; tÞ þ bI2ð�x; tÞ � r � W

� Ce–h
se

ðT e � T lÞ

� on
ot

Eg þ
3

2
kBT e H 3=2

1=2ðgeÞ þ H 3=2
1=2ðghÞ

h i� �

� n
oEg
on

on
ot

þ oEg
oT l

oT l
ot

� �

ð18Þ
with

Ce–h ¼
3

2
nkB H 3=2

1=2 geð Þ þ H 3=2
1=2 ghð Þ

n

� ge 1� H 3=2
1=2 geð ÞH�1=2

1=2 geð Þ
h i

�gh 1� H 3=2
1=2 ghð ÞH�1=2

1=2 ghð Þ
h io

þ n
oEg
oT e

ð19Þ

The last two terms on the right-hand side of the carrier

energy balance equation (18) are the rate of change of

the carrier energy density due to the changes of the car-

rier density and the band-gap energy, respectively.

2.3. Rate equation for lattice energy

For semiconductor materials the lattice thermal con-

ductivity is comparable with the bulk value; therefore,

thermal transfer in the lattice should be incorporated

into the heat conduction equation [14]. Thus,

Cl
oT l
ot

¼ r � klrT lð Þ þ Ce–h
se

ðT e � T lÞ ð20Þ

The three rate equations for the electron–hole pair den-

sity, the carrier temperature, and the lattice temperature,

(14), (18) and (20), together with the constitutive equa-

tions for the carrier pair current and the ambipolar

energy current, (12) and (15), compose the complete

self-consistent model for ultrafast transport dynamics

in semiconductors subjected to short-pulse laser heating.

The pair density, the carrier and lattice temperature, and

the carrier pair and ambipolar energy current can be

solved with proper initial and boundary conditions.

It is noted that Eq. (14) reduces to a carrier density

model when the divergence of carrier current (r � �J ) is
neglected. Hence, the carrier density can be solved with

this simple model as long as the four material properties

a, b, c and h are assumed to be temperature independent.
The capability of both the self-consistent model and the

carrier density model will be investigated and compared

later.

2.4. Non-degenerate systems of electrons

When the quasi-Fermi level ue(uh) is considerably
lower than EC (higher than EV), the reduced Fermi level
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ge(gh) is large and negative. Consequently, all the Fermi–
Dirac integrals are approximately equal to exp(ge) [or
exp(gh)]. This corresponds to the assumption of Max-
well–Boltzmann distribution, ne = Ne exp(ge), which is
also referred to the non-degenerate system. Since

H n
fðgcÞ ! 1 for all n and f, the equations for the carrier

pair current, the total ambipolar energy current, and the

carrier energy density can respectively be simplified from

Eqs. (12), (15) and (18) to

�J ¼ �D rnþ n
2kBT e

rEg þ
n
2T e

rT e

� �
ð21Þ

W ¼ Eg þ 4kBT e
� �

�J � je þ jhð ÞrT e ð22Þ

Ce–h
oT e
ot

¼ a þ Hnð ÞIð�x; tÞ þ bI2ð�x; tÞ � r � W

� Ce–h
se

ðT e � T lÞ �
on
ot

Eg þ 3kBT e
� �

� n
oEg
oT l

oT l
ot

þ oEg
on

on
ot

� �
ð23Þ

In addition, the ambipolar diffusivity, Eq. (13), reduces

to

D ¼ D0 ¼
2kBT e
q

l0el
0
h

l0e þ l0h
ð24Þ

and the electron–hole pair heat capacity

Ce–h ¼ 3nkB þ n
oEg
oT e

ð25Þ
• Grid points for n, Te and Tl (i = 1, 2, …, n)

Grid points for J, W, Ql, and Eg (j = 1, 2, …, n+1)

i :

j :

1

1

2 3 n-2 n-1 n

2 3 n-2 n-1 n+1n

x = Lx = 0

(a): 1D laser heating

(b):  Finite difference grid points

Laser

…

…

Fig. 1. Finite difference grid mesh.
3. Laser intensity

The laser intensity Ið�r; tÞ in the first two terms on the
right-hand side of Eqs. (14) and (18) needs to be de-

scribed. For a volume-absorbing material, the laser

attenuation in the direction of propagation (z) can be

obtained by solving the propagation loss due to the

one- and two-photon absorption and the free-carrier

absorption [15]

oI
oz

¼ � a þ Hnð ÞI � bI2 ð26Þ

For the constant values of a, Hn and b, a closed-form
solution of the laser intensity is derived by integrating

the differential equation (26)

Ið�x; tÞ ¼ a þ Hnð ÞI0e� aþHnð Þz

a þ Hnð Þ þ bI0 1� e1� aþHnð Þz½ 
 ð27Þ

where I0 is the transmitted laser intensity at the beam

incident surface (z = 0). Neglecting the effect of the

free-carrier absorption reduces Eq. (27) to that derived

by Zhang and Chen [16]. If any of the above three prop-

erties is temperature dependent or the carrier density

varies with location, the laser intensity must be solved

numerically with the coupled rate equations.
The optical penetration depth (d) is defined as the dis-
tance z at which I/I0 is equal to e

�1. It is obtained from

Eq. (27)

d ¼ 1

a þ Hn
ln

e a þ Hnð Þ þ bI0
a þ Hnþ bI0

� 	
ð28Þ

The penetration depth 1/a for single-photon absorption
can be retrieved from Eq. (28) by letting b =H = 0.

When a laser beam is gaussian in both time and

space, the transmitted laser intensity at the incident sur-

face is expressed in the form

I0ðr; tÞ ¼
ffiffiffiffi
x
p

r
ð1� RÞU

pb2tp
e�ðr=bÞ2 e�x ðt�3tpÞ=tp½ 
2 ð29Þ

The pulse duration (tp) is defined as the full width at the

half maximum. It is assumed in this paper that the lasing

starts at t = 0, reaches the maximum power at t = 3tp,

and ends at t = 6tp. For ultrashort laser material interac-

tions, a one-dimensional (1D) heating problem is often

analyzed since the heating spot size is much larger than

the depth of the thermally affected zone [17]. Letting /
= U/pb2 and b! 1 in Eq. (29) leads to the 1D form of

the laser intensity

I0ðtÞ ¼
ffiffiffiffi
x
p

r
ð1� RÞ/

tp
e�x ðt�tmÞ=tp½ 
2 ð30Þ
4. Numerical results and discussion

The 1D version of the three governing equations (14),

(18) and (20) together with the constitutive equations

(12) and (15) and the following initial and boundary

conditions are solved with a finite difference method:

nðz; 0Þ ¼ 1012 cm�3; T eðz; 0Þ ¼ T lðz; 0Þ ¼ 300 K ð31Þ

Jðz; tÞ ¼ 0; W ðz; tÞ ¼ 0; qlðz; tÞ ¼ 0 at z ¼ 0; L ð32Þ

The finite difference grid mesh is sketched in Fig. 1. The

spatial derivatives of n, Te, Tl, J, W, Ql(= �kloTl/oz),



Table 1

Model parameters

Properties Silicon Germanium

Kl (W/cmK) 1585T�1:23
l 675T�1:23

l

Cl (J/cm
3) 1:978þ 3:54� 10�4T l � 3:68T�2

l 1.7 Æ (1 + Tl/6000)
Ke (eV/sÅK) �3.47 · 108 + 4.45 · 106Te �3.58 · 109 + 6.49 · 106Te
se (fs) 240 Æ (1 + n/6.0 · 1020cm�3) 300 Æ (Tl/Trm)

�2.5

c (cm6/s) 3.8 · 10�31 2.0 · 10�31

h (s�1) 3.6 · 1010exp(�1.5Eg/kBTe)
D0 (cm

2/s) 18 Æ (Trm/Tl) 65 Æ (Tl /Trm)
�1.5

Eg (eV) 1:16� 7:02� 10�4T 2l =ðT l þ 1108Þ � 1:5� 10�8n1=3 0.803�3.9 · 10�4Tl
R 0.37 + 5 · 10�5 Æ (Tl�Trm) 0.45

a (cm�1) 5.02 · 103exp(Tl/430) 6.0 · 103exp(Tl/430)
b (cm/GW) 2.0

H (cm2) 5.1 · 10�18 Æ (Tl/Trm)
m�
e 0.33 0.22
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and Eg at the interior points are approximated with the

central difference, and those at the boundary are evalu-

ated with the first-order approximation. A forward dif-

ference scheme is employed to advancen, Te and Tl.

Two materials, Si and Ge, irradiated with a 775-nm laser

are investigated. Their material properties used in the

numerical analysis are listed in Table 1 [12,18–20]. For

both materials the sample thickness is set to be 20lm,
for which it is large compared to the optical penetration

length and the maximum carrier diffusion distance. A

total of 61 equally-spaced grid points for n, Te and Tl
is found to be sufficiently fine to resolve the problem.

In fact, the result obtained from a model consisting of

21 points was within in 1.0% difference from the 61-

point model. The time step is set at 0.5 · 10�19 s for
the self-consistent model and 1.0 · 10�17 s for the carrier
density model.

Fig. 2 shows the time history of the carrier density

and temperature and the lattice temperature at the inci-
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Fig. 2. Time evolution of carrier density (n), carrier tempera-

ture (Te), and lattice temperature (Tl) at the front surface (z = 0)

of a 20-lm silicon sample heated by a 500-fs laser pulse at

fluence / = 0.005J/cm2.
dent surface (z = 0) for a silicon sample irradiated by a

500-fs laser pulse of / = 0.005J/cm2. Attention is paid
to the peak of the carrier temperature. It occurs at about

t = 0.68ps, earlier than the occurrence of the laser peak

power (t = 1.5ps). On the other hand, the peak of the

carrier density takes place at a much later time, about

2.21ps. When the peak carrier temperature occurs, the

laser intensity is only about 0.06% of the maximum.

Now that the laser energy deposited into the material

by the time instance is so small compared to the total ab-

sorbed energy, how can the carrier temperature reach

the maximum at this early time? The reason is as fol-

lows. Five sources, as given by Eq. (18), are competing

for the energy change (Ce–hoTeot) that leads to elevated

carrier temperature. The numerical result shows that be-

fore the peak carrier temperature, the absorbed laser en-

ergy and the change of the carrier energy density due to

the change of the carrier density are predominating over

the other three. The resulting rate of the net energy

change is positive although it is small. Of consequence,

a very small amount of the electron–hole pairs are cre-

ated during this early time. This, according to Eq.

(19), leads to a small carrier heat capacity and thereby

a rapid, noticeable rise in the carrier temperature. As

the time increases, the carrier density increases drasti-

cally because a much more laser energy has been absorb-

ing. As a result of the large number of the carriers

generated, the energy change due to the rapid change

of the carrier density (the last second term on the

right-hand side of Eq. (18)) becomes pronounced, and

so does the energy loss due to the thermal transfer from

the carriers to the lattice. The change makes the rate of

the net energy change unable to remain positive at some

point and thereafter even though considerably large

laser energy is absorbed. This explains why the carrier

temperature continues falling after it reaches the peak.

The numerical result also shows that the carrier diffusion

and the impact ionization both have very little impact on

the creation of electron–hole carriers. In fact, one-pho-
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ture (Te), and lattice temperature (Tl) at the front surface (z = 0)

of a 20-lm silicon sample heated by a 500-fs laser pulse at

fluence / = 0.015J/cm2.
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ture (Te), and lattice temperature (Tl) at the front surface (z = 0)

of a 20-lm silicon sample heated by a 500-fs laser pulse at

fluence / = 0.15J/cm2.

Fig. 5. Maximum number density of carriers at the incident

surface of Si generated by a 500-fs laser pulse: (a) a = 5.02 ·
103exp(Tl/430)cm

�1 and c = 3.8 · 10�31cm6/s, (b) a = 5.02 ·
103exp(Tl/430)cm

�1 and c = 0, and (c) a = 1.004 · 104cm�1 and

c = 0.
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ton absorption and the Auger recombination are the two

crucial factors that alter the carrier density.

Two peaks structure of the carrier temperature is

shown in Fig. 3, where the results are computed with

/ = 0.015J/cm2. The first peak carrier temperature is
1627K at about t = 0.63ps, and the second peak is

1631K at about 1.48ps. Two peaks both occur before

the carrier density reaches the maximum. The first peak

carrier temperature is slightly higher than that of the

previous case (1615K) although the laser power is two

times higher. Due to the fact that the Auger electron–

hole recombination rate is proportional to the carrier

density cubed, the reduction rate in the carrier density

should be different between the two cases. This is con-

firmed by comparing the declining slopes of n in Figs.

2 and 3. It is evident also, by comparing the carrier

and lattice temperature in Figs. 2 and 3, that it takes a

longer time for a high fluence to establish the thermal

equilibrium than for a low fluence.

Fig. 4 displays the time evolution of n, Te and Tl at

z = 0 for / = 0.15J/cm2. Like the previous two relatively
low fluence cases, Te rises rapidly and reaches its peak in

the very beginning. After a slight decrease, however, Te
soars to a much higher peak that occurs beyond the

peak carrier density.

As mentioned previously, one-photon absorption

and the Auger recombination are the two crucial factors

that alter the carrier density. Their effects are presented

in Fig. 5, where the results are calculated at the incident

surface of a Si sample irradiated by the 500-fs lasers of

different fluences. The one-photon absorption coefficient

(a) used in this paper is lattice temperature dependent,
5.02 · 103exp(Tl/430)cm�1, while the Auger recombina-

tion coefficient (c) is constant, 3.8 · 10�31 cm6/s. For
ease of explanation, these values are referred to as case

(a). The other cases considered are: (b) a = 5.02 ·
103exp(Tl/430)cm
�1 and c = 0 and (c) a = 1.004 ·

104cm�1 and c = 0. The constant a in case (c) is the value
at room temperature. It is seen in Fig. 5 that the carrier

density computed from case (c) is nearly linearly propor-

tional to the laser fluence. For the laser pulses studied

here, it generally takes about 2ps (more or less depend-

ing the laser fluence) for the carrier density to reach the

maximum. At this moment, the lattice is already heated

up by the hot carriers. For the 0.15J/cm2 laser pulse, for

example, the lattice temperature is 377K at about

t = 1.72ps, the time when the carrier density reaches

the maximum (Fig. 4). At this temperature a would in-
crease by about 20%. Since the optical penetration depth

basically is inversely proportional to the one-photon

absorption coefficient, a larger portion of the laser
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energy is absorbed and consequently more electron–hole

carriers are created near the incident surface. Comparing

the results (b) and (c) in Fig. 5 indicates the effect of the

one-photon absorption on the carrier density. When the

Auger recombination effect is included, the carrier den-

sity should decrease due to the n3 decaying rate. The re-

sult (a) in Fig. 5 shows the reduction of the carrier

density caused by the Auger recombination.

Non-thermal melting is assumed to occur when the

maximum carrier density is equal to the critical value.

It has been an open question at which electron density

the ultrafast disordering of the crystal happens,

although the range of 1021–1022cm�3 is generally be-

lieved. In this work, the critical electron density for the

initiation of lattice disordering in Si is set at 2.74 ·
1021cm�3 for the self-consistent model and 2.60 ·
1021cm�3 for the carrier density model so that the com-

puted damage thresholds are the same and match the

experimental data for the 500-fs pulse case. Fig. 6 com-

pares the theoretical damage fluence thresholds with the

measured value [9,21] for Si. It appears that the self-con-

sistent model agrees fairly well with the experimental

data; on the other hand, the carrier density model is only

in good agreement for tp < 1ps. The dimensionless time

(tf/tp) and the lattice temperature at the onset of damage

are given in Fig. 7 as a function of the laser pulse length.

For the pulse durations investigated, non-thermal melt-

ing always initiates in the time interval of 3tp–4tp, some-

time after the lasers pass their peak power. The lattice

temperature at the onset of damage increases with the

laser pulse length, especially for picosecond pulses. The

lattice temperature before the onset of damage plays

an important role in the model prediction of the damage

threshold. For sub-picosecond laser heating, the change

of one-photon absorption is minor because the lattice

basically remains thermally undisturbed (Fig. 7). There-

fore, as illustrated in Fig. 6, there is an insignificant dif-

ference of the damage threshold between the two
Fig. 6. Theoretical and experimental damage threshold of Si.
models. The discrepancy, however, becomes pronounced

for picosecond pulses due to the fact that a much greater

one-photon absorption that results from the significant

lattice temperature rise is used in the self-consistent

model.

It is noted here that for the 5-ps laser case the com-

puted lattice temperature reaches the normal (slow heat-

ing) melting point at about t = 18.03ps, slightly before

the maximum carrier density reaches the critical value,

at t = 18.11ps. It is believed that for such an extremely

short laser heating, material would undergo an ultrafast

superheating process and the resulting melting point

could be well beyond the normal one. To improve the

damage assessment for picosecond pulses, more accurate

material properties, particularly for the one-photon

absorption and Auger recombination, and the kinetics

of an ultrafast superheating process are needed. Further

investigation on these issues is suggested.

Fig. 8 compares the theoretical non-thermal melting

thresholds with the measurement [9] for Ge semiconduc-
Fig. 8. Theoretical and experimental damage threshold of Ge.
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tor. In this case the critical electron density is set at

2.32 · 1021cm�3 for the self-consistent model and

2.15 · 1021cm�3 for the carrier density model. Again,

the self-consistent model matches fairly well with the

experimental data while the carrier density model is only

in good correlation for tp < 1ps.

It should be noted here that in the present numerical

study the reduced Fermi levels (gc) are found to be
<�10. At those values, all the Fermi–Dirac integrals
are approximately equal to exp(gc) and thus

H n
fðgcÞ ! 1. This suggests that the equations given in

Section 2.4 for the non-degenerate system be sufficient

for the investigation of non-thermal melting.
5. Conclusions

A complete self-consistent model for transport

dynamics in semiconductors caused by ultrashort-pulse

laser heating is presented based on the relaxation-time

approximation of the Boltzmann equation. The car-

rier–lattice nonequilibrium interactions are simulated

with a finite difference method to obtain the temporal

and spatial evolution of the carrier density and temper-

ature as well as the lattice temperature. Generally speak-

ing, the maximum electron–hole carrier density occurs

after the laser passes its peak power. For low laser flu-

ences, there is only one peak of the carrier temperature.

It occurs at a very early time due to the low carrier heat

capacity. For high laser fluences, on the other hand, two

peak structures of the carrier temperature can be estab-

lished. The self-consistent model and the carrier density

model are compared for their capability of evaluating

the damage threshold. It is found that the self-consistent

model correlates fairly well with the experimental data,

while the carrier density model is only in good agree-

ment for tp < 1ps. To improve the damage prediction

of the self-consistent model for picosecond pulses, accu-

rate temperature-dependent material properties, particu-

larly for the one-photon absorption and Auger

recombination, and the kinetics of an ultrafast super-

heating process are needed. Further investigation on

these issues is suggested.
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[5] S.V. Govorkov, T. Schröder, I.L. Shumay, P. Heist,

Transient gratings and second-harmonic probing of the

phase transformation of a GaAs surface under femtosec-

ond laser irradiation, Phys. Rev. B 46 (1992) 6864–6868.

[6] K. Sokolowsi-Tinten, D. von der Linde, Generation of

dense electron–hole plasmas in silicon, Phys. Rev. B 61

(2000) 2643–2650.

[7] A. Rousse, C. Rischel, S. Fourmanux, I. Uschmann, S.

Sebban, G. Grillon, Non-thermal melting in semiconduc-

tors measured at femtosecond resolution, Nature 410

(2001) 65–68.

[8] J.A. Van Vechten, R. Tsu, F.W. Saris, Nonthermal pulsed

laser annealing of Si: plasma annealing, Phys. Lett. 74A

(1979) 422–426.
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